Uroplakins Do Not Restrict CO2 Transport through Urothelium*

نویسندگان

  • Florian Zocher
  • Mark L. Zeidel
  • Andreas Missner
  • Tung-Tien Sun
  • Ge Zhou
  • Yi Liao
  • Maximilian von Bodungen
  • Warren G. Hill
  • Susan Meyers
  • Peter Pohl
  • John C. Mathai
چکیده

Lipid bilayers and biological membranes are freely permeable to CO(2), and yet partial CO(2) pressure in the urine is 3-4-fold higher than in blood. We hypothesized that the responsible permeability barrier to CO(2) resides in the umbrella cell apical membrane of the bladder with its dense array of uroplakin complexes. We found that disrupting the uroplakin layer of the urothelium resulted in water and urea permeabilities (P) that were 7- to 8-fold higher than in wild type mice with intact urothelium. However, these interventions had no impact on bladder P(CO2) (∼1.6 × 10(-4) cm/s). To test whether the observed permeability barrier to CO(2) was due to an unstirred layer effect or due to kinetics of CO(2) hydration, we first measured the carbonic anhydrase (CA) activity of the bladder epithelium. Finding none, we reduced the experimental system to an epithelial monolayer, Madin-Darby canine kidney cells. With CA present inside and outside the cells, we showed that P(CO2) was unstirred layer limited (∼7 × 10(-3) cm/s). However, in the total absence of CA activity P(CO2) decreased 14-fold (∼ 5.1 × 10(-4) cm/s), indicating that now CO(2) transport is limited by the kinetics of CO(2) hydration. Expression of aquaporin-1 did not alter P(CO2) (and thus the limiting transport step), which confirmed the conclusion that in the urinary bladder, low P(CO2) is due to the lack of CA. The observed dependence of P(CO2) on CA activity suggests that the tightness of biological membranes to CO(2) may uniquely be regulated via CA expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity of uroplakin localization in human normal urothelium, papilloma and papillary carcinoma

BACKGROUND Uroplakins are differentiation-related membrane proteins of urothelium. We compared uroplakin expression and ultrastructural localization in human normal urothelium, papilloma and papillary carcinoma. Because of high recurrence rate of these tumours, treated by transurethral resection, we investigated urothelial tumour, resection border and uninvolved urothelium. PATIENTS AND METHO...

متن کامل

Retinoid signaling in progenitors controls specification and regeneration of the urothelium.

The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are consider...

متن کامل

Uroplakins and their potential applications in urology

INTRODUCTION Urothelium is a highly specialized type of epithelium covering the interior of the urinary tract. One of the structures responsible for its unique features are urothelial plaques formed from glycoprotein heteropolymers, the uroplakins. Four types of uroplakins are known - UPIa, UPIb, UPII, UPIII. Herein we review the current status of knowledge about uroplakins and discuss their po...

متن کامل

SNX31: A Novel Sorting Nexin Associated with the Uroplakin-Degrading Multivesicular Bodies in Terminally Differentiated Urothelial Cells

Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understan...

متن کامل

Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability.

Although water, small nonelectrolytes, and gases are freely permeable through most biological membranes, apical membranes of certain barrier epithelia exhibit extremely low permeabilities to these substances. The role of integral membrane proteins in this barrier function has been unclear. To study this problem, we have ablated the mouse gene encoding uroplakin III (UPIII), one of the major pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 287  شماره 

صفحات  -

تاریخ انتشار 2012